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(Z)-l-Chloro-2-methyl-2-butene (4-Z) was obtained in a 
similar way from (Z)-2-methyl-2-butanoic (angelic) acid 
(3-Z).10 In this case 3-Z (99.5% Z isomer) gave 4-Z consisting 
of 98.8 ± 0.4% Z isomer.6-9 Configurations of angelic (3-£) 
and tiglic (3-Z) acids have been unequivocally established by 
x-ray analysis." Thus the method of synthesis establishes 
configurations of the allylic chlorides. This assignment is 
confirmed by the NMR spectra. The vinyl proton shift is 5 5.43 
for 4-Z and 8 5.59 for A-E (DCCl3). These values, and the shift 
differences, are in good agreement with values obtained by a 
model-compound method for calculating shifts of olefinic 
protons.12 

The isomeric l-chloro-2-methyl-2-butenes (4) were con­
verted to dimethylcyclopropane by a method developed by 
Brown and Rhodes3 which involves hydroboration with 9-
BBN. The pertinent data are summarized under eq 2.9 Data 
for A-E and 4-Z are averages for four and three independent 
experiments. The isomeric dimethylcyclopropanes were 

i. 9-BBJS H / . CH1 H /v H 

CH;f H CH3 CH3 

>99.9% 4-E » 0.3 ± 0.1% 99.7 ± 0.1% 
98.7 ± 0.1% 4-Z *• 96.3 ± 0.2% 3.7 ± 02% 

identified by comparison of properties with authentic sam­
ples.13 

Syn hydroboration4 of 4-Z leads to the erythro -y-chloro-
borane (5). Similarly A-E gives the threo diastereomer. Pre­
sumably cyclization involves coordination of the base with the 
boron atom to form an ate complex which undergoes 1,3-
elimination.3'4 The present results show that this proceeds with 
inversion of configuration of the carbon-boron center. 

/ / ^ - ^ H-«: H ^ C H 3 OH" / f 3 

CH3-Cf C H 3 Y H C H ^ ( H 

CH2CI CH*C1 \ 1 
4-Z 5 

This stereochemical result is in contrast to that generally 
observed with organoboranes. Most nonradical reactions are 
stereospecific and proceed with retention of configuration of 
the carbon atom bonded to boron.4 However, these cases differ 
mechanistically from the 1,3-elimination and involve migration 
of an alkyl group from boron to an adjacent electron deficient 
atom.4 The base-promoted halogenation of organoboranes is 
presumably mechanistically related to the 1,3-elimination 
(electrophilic attack at a carbon atom bonded to boron in an 
ate complex)4 and also proceeds with predominating inver­
sion.14 

The present data show that the cyclopropane synthesis (eq 
1) is highly stereoselective. However, there is some loss of 
configuration in one of the steps. The greater loss with 4-Z than 
with A-E suggests this occurs before the cyclization step be­
cause the conformation for concerted 1,3-elimination appears 
more favorable for the erythro chloroborane (5) than for the 
threo diastereomer. The slight loss could result from isomer-
ization of the allylic chloride prior to reaction,15 or a less than 
100% syn addition. 

The high stereoselectivity of this two-step transformation 
suggests that asymmetric hydroboration16 followed by cycli­
zation may be a useful method for preparing optically active 
disubstituted cyclopropanes. 
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New Synthetic Reagents. 
2-Methoxy-3-phenylthiobuta-l,3-diene. A Novel 
Annelating Agent 

Sir: 

. We wish to report the preparation of a versatile new diene, 
2-methoxy-3-phenylthiobutadiene (1), which serves as an 
annelating agent to introduce a masked /3-ketosulfide moiety 
as an integral part of the annelation. Such a structural feature 
has been shown to be versatile in elaborating organic struc­
tures.1 

Moreover, the regiochemistry of the annelation indicates 
that the phenylthio, rather than the methoxy group, is con­
trolling in the thermal process, whereas the methoxy group 
plays a greater controlling role in the catalyzed reaction—an 
unusual dichotomy.2 The ease of desulfurization of organic 
compounds suggests the application of this directive effect of 
sulfur as an approach for obtention of a regiochemistry that 
complements that obtained with the usual dienes such as 2-
methoxybutadiene.2,3 

2-Phenylthiocyclobutanone,4 prepared from 2-bromocy-
clobutanone5 (PhSNa, DMF, 0°, 1 h), is O-methylated (KH, 
THF-DMF, (CH3O)2SO2, -78° — 0°) to give 1-methoxy-
2-phenylthiocyclobutene (2)4 in 46% yield (from bromocy-
clobutanone). No purification of the intermediates starting 
from cyclobutanone is necessary. The cyclobutene 2 is purified 
on Baker alumina eluting first with hexane and then 1-2% 
ether in hexane. Pyrolysis, by dropping a hexane solution of 
2 through a 40 cm hot tube packed with glass helices (150 ml 
free volume, flow rate ~500 ml/min, 340°) that has been 
pretreated with 0,7V-bistrimethylsilylacetamide, gives the 
desired diene I4'6 in nearly quantitative yields. The sensitivity 
of the diene towards polymerization makes it desirable to place 
a trace amount of 2,6-di-?erf-butyl-4-methylphenol as a sta­
bilizer in the cold traps, and to store the diene over this stabi­
lizer. We normally utilize the diene within a week of its prep­
aration. 

Reaction of diene 1 with dienophiles, either neat or in tolu­
ene solution at reflux, produces the desired adducts (see Table 
I).7 The question of the regiospecificity was directly answered 
in the cases of entries 4, 5, and 7 and it is assumed that the same 
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Table I. Diels-Alder Reactions of 2-Methoxy-3-phenylthio-buta-l ,3-diene 

Entry Dienophile Conditions" Adduct6^ Yield (%/ 

7V-Phenylmaleimide 

Dimethyl acetylenedicarboxylate 

Maieic anhydride 

Acrylonitrile 

PhCH3, 2 h 

PhCH,, 2 h 

PhCH3, 4 h 

neat, 24 h 

NPh 

C R 1 O N - ^ C O 2 C H , 

C H J O V ^ ^ N ^ - C O J C H J 

PhS-

CB 

CO2CH1, 

CN 

71 

61 

4»? 

63c 

Methyl vinyl ketone 

Methyl acrylate 

Methacrolein 

neat, 2 h 

neat, 24 h 

neat, 24 h 

3 

CH1I 

PhS-

O 

OCH, 

CH1O-

PhS' 

~"X^—C H 0 

75c 

65<* 

72<? 

a All reactions were performed at reflux in the presence of 2,6-di-rerr-butyl-4-methylphenol as a stabilizer. b The major adduct is shown. 
cMajor:minor >5:1. d Major:minor >3:1. e AU compounds have been fully characterized by spectral means and elemental composition. See 
ref 4 for selected spectral data. /No attempt to optimize yields has been made. S The initial adduct was subjected to methanolysis and then 
diazomethane before isolation. 

a SPh SPh 

OCH, 

* P h Y 
C H 3 O ^ 

PhS 

trend holds in the case of entry 6. Furthermore, the structural 
correlations provide illustrations of the utility of these inter­
mediates in synthesis. 

The /3-ketosulfide moiety is present in a masked form and 
allows easy structural manipulation of the functional group 
of the dienophile. For example, the MVK adduct 3 undergoes 
a standard Wittig reaction (Ph 3P+CH 3Br - , «-C4H9Li, THF, 
0° —*• 25°) and subsequent hydrolysis (4:1 THF:10% aqueous 
HCl, 20°)8 to give the sulfenylated ketone 45 in 52% yield. 
Regiospecific methylation5 (NaH, THF, CH31,4 h, 77% yield) 
and dehydrosulfenylation (MCPBA, CH2Cl2, - 7 8 ° ; add 
(CH3O)3P, reflux; 66% yield) produce carvone, identical in 
all respects with an authentic sample.9 The acrylonitrile adduct 
5 was correlated with 3 by reaction with methyllithium (ether, 
20°) followed by selective hydrolysis of the resultant imine 
(oxalic acid, water, 25°). 

The use of the ketosulfide unit for controlled alkylations of 
unsymmetrical ketonesld was illustrated with adduct 6. Again, 
the aldehyde was subjected to standard Wittig conditions and 
subsequently hydrolyzed as above to give 75 in 66% overall 
yield. Alkylation with geranyl bromide (NaH, THF, 20°, 63% 
yield) gives 8.5 It has been previously shown that the phenylthio 

group, in the absence of severe steric interactions, prefers the 
axial orientation and deshields the axial hydrogen on C-6 (Ha 
in 7 and 8).10 In each of these compounds, this proton appears 
as a pair of doublets (7 8 2.76 and 2.89, J = 14 Hz, 8 5 3.28 and 
3.40, 7 = 1 5 Hz) for the two isomers at C-5. In the product 
from the alternative Diels-Alder regioisomer, this proton 
would show further coupling to a methylene group. Reduction 
of the sulfide (6% Na-Hg, CH3OH, Na2HPO4 , 0°, 55% yield) 
gives the regiospecifically monoalkylated ketone 9.4 

A new application of the ketosulfide illustrates the utility 
of this annelation for the regiospecific formation of a dios-
phenol.11 Reduction (NaBH4 , CH 3OH, 0°), benzoylation 
(PhCOCl, pyridine, 0°), and hydrolysis (50:1 CH3CN:60% 
aqueous HClO4, 0°) gives the benzoate 104 in 60% overall 
yield. Lead tetraacetate (PhH, reflux, 10 min, 89% yield) 
smoothly acetoxylates the ketosulfide to give the a-diketone 
in a protected form, i.e., I I . 4 Similarly, the ketosulfide 13,4 

obtained by hydrolysis (50:1 CH3CN:60% aq HClO4) of the 
adduct 12, undergoes smooth acetoxylation to 144 under 
identical conditions. Conversion of 11 to the diosphenol, as its 
acetate 15,4 in a regiospecific fashion by the dehydrosulfeny­
lation procedure (MCPBA, CH2Cl2 , - 7 8 ° , then reflux, 86% 
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O He 

PhS 
OAc 

P h S - J ^ \ 

O2CPh 

yield) completes the sequence. The presence of the vinyl proton 
as a triplet, 8 6.26,7 = 4 Hz, confirms the regiochemistry of 
the initial adduct as assigned. 

12-
P h S ^ ^ ^ - ^ 

I NPh 

0 
13 

OAc p 

NPh 

0 

14 

15 

CH3O 

The reaction is subject to a marked acceleration by the ad­
dition of anhydrous magnesium bromide. Under these condi­
tions the MVK adducts are formed in 91% isolated yield at 
room temperature; however, the ratio of 3:15 of >5:1 in the 
uncatalyzed reaction becomes approximately 1:1 in the cata­
lyzed case in contrast to the normal trends for the Lewis acid 
catalyzed Diels-Alder reaction. Discussion of the controlling 
effect of the sulfur substituent over oxygen in the normal 
thermal mode and the tendency for reversal of this directive 
effect in the presence of a Lewis acid is postponed to the full 
paper. 

The advantages of this novel annelating procedure are 
manifold. (1) The versatile /3-ketosulfide moiety is introduced 
in a protected form—a fact that allows modification elsewhere. 
(2) We have demonstrated the transformations listed below. 

C H 7 ( X ^ s EWG 

X + f 

I 1 

AcO' 

Other applications of the chemistry of sulfenylated ketones1 

and diosphenols13 further enhance the utility of this chemistry. 
(3) The regiochemistry observed here complements the normal 
regiochemistry obtained with 2-oxygenated dienes. The ease 
with which sulfur can be removed from organic molecules may 
make this a general approach to reversing the normal orien­
tation of Diels-Alder reactions. 
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